TEXAS A&M GRILIFE EXTENSION

"When the well runs dry we will know the worth of water."

Benjamin Franklin

- Two methods to sustain water supply:
 - Increase Supply
 - Reduce Demand

Nature's First Rain Catchers

1/3 of Root Die Annually

Roof-Reliant Landscaping[™]

Rainwater Harvesting with Cistern Systems in New Mexico

New Mexico Office of the State Engineer 1-800-WATER-NM • www.ose.state.nm.us ©2009 New Mexico Office of the State Engineer

Low Impact Development (LID)

- Low impact development (LID) is increasingly being adopted as an alternative to traditional water management systems.
- LID includes practices such as bioretention, green roofs, rainwater harvesting, and permeable pavements.

How Rainwater Harvesting Works

- Types of Systems
 - Simple and complex systems
 - Simple: distributes rainwater immediately

• Complex: stores some or all of rainwater for later use

Complex /Active Rainwater Harvesting

Complex water harvesting system with roof catchment, gutter, downspout, storage and drip distribution system.

How to Collect Rainwater

P .6 gallons per square foot roof per 1" rainfall
P 2,000 sq. foot roof X 1" rain (0.6) = 1,200 gal. water
P 1,200 gal. X 30" rainfall per year= 36,000 gal/yr

Texas A&M System

How Big Does The Roof Need To Be?

5' diameter Pi times radius squared 3.14 x 2.5 x 2.5 = 19.6 square feet 19.6 x .6 = 11.8 gallons per 1" rain 4" = Full Tank

32 inches = Filled 8 times/yr

Filled 16 Times!

24 Times

Three approaches to rainwater/stormwater management

Cistern managed for water supply

Cistern managed for stormwater control

Cistern managed for BOTH water supply and managed for stormwater control or fire protection

Simple - distributes rainwater immediately

Anna 22,

What is a Rain Garden (Bioretention)?

A rain garden is a beautiful landscape feature consisting of a planted shallow depression that collects rainwater runoff from roofs, parking lots and other impervious surfaces.

Rain Garden in Parking Lot

Rain Gardens

- Proximity to foundations
- Location relative to downspouts
- Ground cover
- Slope
- Views from the house and road
- Existing landscape

Proximity to foundations
 - > 10 feet from a structure or foundation

- Location relative to downspouts
 - Garden will catch water from roof as well as all grass uphill

Texas A&M System

After Digging

Texas A&M System

How do I determine the size of my raingarden?

- Slope
- Soil texture class
- Distance from downspout
- Catchment area

How do I determine the size of my raingarden?

- Water movement and Soil characteristics
 - Soil characteristics influence water movement
 - Soil profile (horizons)
 - Impermeable layers
 - Seasonal groundwater indicators

Sand, Clay, Shallow / Rocky

Sand

Clay

Texas A&M System

Wetting Patterns Wetted Area Appearing on Soil Surface Clay Sandy Loam đ٦ Cross Section of Wetted Area in Soil Sandy Clay Loam

How do I determine the size of my raingarden?

- Catchment area
 - Determine catchment area
 - Footprint of roof and any area of lawn between the downspout and the raingarden.

How do I determine the size of my rain garden?

- Sizing factor
 - Sizing factor for rain gardens less than 30 feet from a downspout.

	3-5 in. deep	6-7 in. deep	8 in. deep
Sandy soil	0.19	0.15	0.08
Silty Soil	0.34	0.25	0.16
Clayey soil	0.43	0.32	0.20

Construction and Maintenance

- Key to the success and long term operation of the system
- Soil Compaction
 - Compacted soil lowers the infiltration rate
 - Aeration or loosening of the soil may be needed
- Berm
 - Utilize as much of the soil from the garden
 - Compact soil on the berm
 - Gentle slopes

Next Determine the Roof Size

Library Roof Length: 30 feet - Width: 20 feet: 30 x 40 = 1,200 square feet Soil type: silt Distance from Library: 30 feet Factor to use: .34 Dam height: 5" Minimal size: 1,200 x .34 = 408 sq. feet (Does not include drainage area from the ground going into the garden)

Place Flags Around Proposed Area

• Determine shape and square footage of proposed rain garden $-12 \ge 40 = 480$ sq.'

Texas A&M Syste

Drive First Stake at the Highest Point of the Garden

Drive Next Stake Down to same Level

The stake at the lowest point is used as a benchmark and the level of the garden is based on that stake.

Then We Used a String Level and Used One Stake as our Benchmark And Leveled Everything To It Using a String Level

Texas A&M System

All the Soil Was Built up to the Top of the String on the edge at the Stakes – And Down 5" Inside the

Areas Too Deep Were Filled In And Places Too Shallow Had To Be Dug Down

Finally All the Garden Area is 5" Deep and Level Throughout the 480 Square Foot Area

The Area Between the Downspout and the Garden Needs Protection From Erosion – Rocks Protect the

Adding Plants – These Are Native Tall Bunch Grasses – Notice How Spread Out The Water Is

Big Bluestem Little Bluestem Yellow Indiangrass Switchgrass

Texas A&M System

AgriLIFE EXTENSI

Your Rain Garden is composed of woody plants (trees and shrubs) and herbaceous species (flowers, grasses, and ground covers) planted in three wetness zones.

What plants?

The lowest zone supports plant species that can tolerate standing water and fluctuating water levels.

Lowest Zone/ Ponding Area The outer edge or highest zone generally contains plant species that prefer drier conditions. / Highest

Zone/

Upland

Area

The middle zone is slightly drier, but also supports plant Middle Zone/ species that can tolerate Depression Area fluctuating water levels.

http://plants.usda.gov

Appropriate Plant Selection

AgriLIFE EXTENSION Texas A&M System

Increase Soil Infiltration

Trinidad Museum

HB 645 – 2003 Texas Legislature

- Prevents homeowner associations from implementing new covenants banning outdoor water-conserving measures
 - Composting
 - Water efficient landscapes
 - Drip irrigation
 - Rainwater harvesting installations
- H.A's can require screening or shielding to obscure view of tanks

Urban Water Budget – Rainwater Harvesting Scenario

"The nation behaves well if it treats the natural resources as assets which it must turn over to the next generation increased and not impaired in value." Teddy Roosevelt

AgriLIFE EXTENSION Texas A&M System

Resources

- ARCSA website <u>www.arcsa.org</u> FREE public domain rainwater harvesting manuals: TX, VA, GA, FL, HI, Ontario. "Resources & Documents" many free publications and hyperlinks to rainwater information around the world
- <u>Texas A&M University</u> <u>http://rainwaterharvesting.tamu.edu</u>
- Texas Rainwater Catchment Association –
- <u>www.texrca.org</u>

Thank You - Billy Kniffen

