2013 Texas Rainwater Revival Imagine Rainwater as THE Water Supply for Your Whole Development

Key Concepts

> Integrated water management
> Deep conservation
> Sustainable water
> Zero Net Water

In our *fourth paradigm*, attempts to control pollution originating from diffuse, non-point sources were added to the growing complex of structural water management infrastructure. This paradigm could also be called the "*end-ofpipe control*" because the predominant point of control of both point and diffuse pollution is where the polluted discharge enters the fast conveyance system or the receiving water body.

... no matter how much money is spent to reduce controllable regulated sources of pollution, the integrity of water bodies has been severely impaired and will remain so if the fast conveyance, end of pipe treatment paradigm alone continues to be the prevailing model.

- Paul Brown, *Cities of the Future*

The need for ecological sustainability of watersheds and water resources ... leads us to a *fifth paradigm* of water management, a model of sustainable and resilient waters and watersheds. This paradigm adopts a holistic, systems approach to the watershed, rather than a functionally discrete focus on individual components (drinking water, sewage, stormwater) characteristic of earlier models.

- Paul Brown, *Cities of the Future*

... in the future all components of water supply, stormwater, and wastewater will be managed in a closed loop

Closing the water loop may require <u>decentralization</u> of some components of the urban water cycle in contrast to the current highly centralized regional systems employing long distance water and wastewater transfers.

- Paul Brown, *Cities of the Future*

Extractive, once-through use and "disposal" vs. Whole Water – Use it all!

Zero Net Water Development

A model of development that:

- Minimizes the disturbance of water flow through the watershed.
- Optimizes the usage efficiency of water that is extracted for human use.
- Routes the used water back into the hydrologic cycle with minimum impairment of water quality.

Zero Net Water begins with Building-scale Rainwater Harvesting as the centerpiece of water supply strategy

Water Supply Options

Private well on each lot
Community well and water system
Connect to area-wide water system
Regional pipelines
Rainwater Harvesting

Rainwater Harvesting is MORE EFFICIENT

Rainwater Harvesting REDUCES UP FRONT COST Developers should like that a lot! > Small investments, house by house > System organization is only up-front cost "Time value of money"

Rainwater Harvesting REDUCES FISCAL RISK Developers should like that a lot!

- Conventional system, large up front cost at risk, carrying costs
- Investment at risk if buildout is slow
- > The larger scale the system,
 - the bigger the gamble
- Rainwater Harvesting, pay-as-you-go, little money at risk

Rainwater Harvesting is UNDER THE USERS CONTROL

> Water supply "developed" by system users

- System users control COSTS, and TIMING of those costs
- Cost of water is KNOWN
- On-going cost of water is LOW
- Cost of water DOES NOT ESCALATE

Rainwater Harvesting is MORE RELIABLE

In large-scale systems

- System breakdowns have far rangingconsequences
- Fixing them not in users' control
- Unpredictable cost impacts
- In a building-scale RWH system
 - Problems isolated to building
 - User in control

Rainwater Harvesting is MORE SUSTAINABLE

> Water capture/utilization more efficient
> Development lives on water falling on it
> Engenders a conservation ethic
> Stimulates efficiency strategies
> Efficiency benefits entire region

Roof-harvested rainwater is **BETTER WATER**

- "Soft" and "pure"
- Quality unchanged as watershed develops Versus ...
- > Water in wells and reservoirs picks up pollutants
- Quality degrades as watershed develops
- > Water from wells may be "hard"
- Piped water heavily chlorinated

 \rightarrow Water from wells and reservoirs is

DEGRADED

from quality of the original rainwater

Rainwater Harvesting USES LESS ENERGY

- > Water treatment uses a lot of energy
 > Distribution uses a lot of energy
 > Pumping well water uses a lot of energy
 > Energy becoming increasingly expensive On the other hand ...
- Building-scale RWH system consumes FAR LESS energy
- It takes water to make energy, so lower energy demand saves more water

Boerne Interior Usage Only

Roofprint	<mark>4,500</mark> sq. ft.
Cistern capacity	35,000 gallons
Occupancy	4 persons
Water usage rate	45 gpcd

Backup supply requirements

2008	6,000 gallons
2009	12,000 gallons
2011	8,000 gallons
Total =	26 000 gallons

Roofprint is the plan area of the ROOF, all the roof, NOT the HOUSE area

"RIGHT-SIZED" RWH FACILITIES AT EACH MODELING LOCATION

	2-Person	n Occupancy	4-Person	n Occupancy			
Modeling Location	Roofprint (sq. ft.)	Cistern Size (gallons)	Roofprint (sq. ft.)	Cistern Size (gallons)			
Austin	2,500	15,000	4,500	35,000			
Blanco	2,500	15,000	4,500	35,000			
Boerne	2,500	15,000	4,500	35,000			
Burnet	2,500	15,000	4,500	30,000			
Dripping Springs	2,500	15,000	4,500	35,000			
Fredericksburg	3,000	20,000	5,000	40,000			
Menard	3,000	20,000	5,500	40,000			
San Marcos	2,500	15,000	4,500	30,000			
Wimberley	2,500	15,000	4,500	30,000			

"Right-Sizing" the Roofprint and Cistern

"Rain barn" separate from house
Incorporate into building design
Opportunities to incorporate cistern

The "Veranda Strategy"

- Verandas (porches, covered patios) around the house
- Relatively inexpensive roof area
- Reduces solar load smaller air conditioner
- Creates outdoor living spaces

The "Veranda Strategy"

to create the Hill Country Rainwater Harvesting Vernacular House Design

Additional Roofprint with the "Veranda Strategy"

Boerne Interior Usage Only

Roofprint	<mark>4,500</mark> sq. ft.
Cistern capacity	35,000 gallons
Occupancy	4 persons
Water usage rate	45 gpcd

Backup supply requirements

2008	6,000 gallons
2009	12,000 gallons
2011	8,000 gallons
Total =	26 000 gallons

Boerne Interior Usage Only

Roofprint4,500 sq. ft.Cistern capacity35,000 gallonsOccupancy4 personsWater usage rate40 gpcd

Backup supply requirements20096,000 gallons20112,000 gallons

Total = 8,000 gallons

Interior Usage Only

with curtailment

Roofprint4,500 sq. ft.Cistern capacity35,000 gallonsOccupancy4 personsWater usage rate45 gpcdCurtailed to 40 gpcd when cistern is low

Backup supply requirements

 2008
 4,000 gallons

 2009
 8,000 gallons

 2011
 8,000 gallons

 Total =
 20,000 gallons

Interior + Irrigation Usage WITHOUT wastewater reuse, no curtailment

Roofprint	4,500 sq. ft.
Cistern capacity	35,000 gallons
Occupancy	4 persons
Water usage rate	45 gpcd
Irrigated area 2	400 sg. ft.

Backup water supply required in 11 years Max. yr. = 44,000 gallons in 2011 2^{nd} most = 38,000 gallons in 2008 Total over 26 years = 220,000 gallons

Interior + Irrigation Usage WITHOUT wastewater reuse, with curtailment

Roofprint	4,500 sq. ft.
Cistern capacity	35,000 gallons
Occupancy	4 persons
Water usage rate	45 gpcd
Irrigated area 2 400 s	a ft

Backup water supply required in 10 years Max. yr. = 18,000 gallons in 2008, 2009, 2011 $2^{nd} most = 12,000$ gallons in 2006 Total over 26 years = 110,000 gallons

Interior + I	rrigation Usage						
WITHOUT wastewater reuse, larger system							
with	n curtailment						
Roofprint	<mark>6,500</mark> sq. ft.						
Cistern capacity	45,000 gallons						
Occupancy	4 persons						
Water usage rate	45 gpcd						
Irrigated area	2,400 sq. ft.						
Backup supply	requirements						
2008	4,000 gallons						
2009	12,000 gallons						
2011	8,000 gallons						
Total =	24,000 gallons						

Interior + Irrigation Usage WITH wastewater reuse, no curtailment

Roofprint4,500 sq. ft.Cistern capacity35,000 gallonsOccupancy4 personsWater usage rate45 gpcdIrrigated area2,400 sq. ft.

Backup supp	oly requirements
2008	8,000 gallons
2009	16,000 gallons
2011	14,000 gallons
Total =	38,000 gallons

Interior + Irrigation Usage WITH wastewater reuse, with curtailment

Roofprint4,500 sq. ft.Cistern capacity35,000 gallonsOccupancy4 personsWater usage rate45 gpcdIrrigated area2,400 sq. ft.

Backup supply requirements20088,000 gallons200912,000 gallons201110,000 gallonsTotal =30,000 gallons

INTEGRATION Among Water Management Functions Enhances Water Use Efficiency

SMALL AREA COLLECTION SYSTEM AND TREATMENT CENTER

STREET

Issues to be Resolved Backup water supply system Regulation and governance > Building design issues Cost effectiveness analysis > Marketability > Sustainability

Options for Backup Supply System

A private well for each building

Community well, "minimal" distribution system

Community well + tanker truck delivery

Connection to existing PWS system

Tanker truck delivery from potable water supply

Tanker Trucks Supplied by Public Water System

Likely to be predominant method

- Favored by developers no up front costs
- Regulatory issues requirement for ASSURED supply?
- > How formalized?
- > What will it cost to set up?

Tanker Trucks Supplied by Public Water System

- Conditions of service for guaranteed supply
- Cost of guarantee?
- Commercial hauler, or utility/HOA truck
- Supply capacity, number of trucks available
- Regulatory status
- Backup requirement must be very limited

Tanker Truck System: Capacity Limitations

Development with 100 houses

1 House = 1 Truck / Month

= 100 Trips / Month

Tanker Truck System: Capacity Limitations

22 working days in a month 100/22 = 4.5 truck trips per day

One tanker truck, full time for *one* development!

Is the private sector ready for this kind of demand?

Ability to meet intermittent demand
 Ability to expand fleet as number of developments grows

Further investigation needed

Summary and Comparison Costs of Water Supply Options

		Capital Cost			NPV of Water/			Total NPV		RWH "premium"		RW	H "premium"	
Water Supply Option		per House			O&M per House		per House		Cap. Cost over option			NPV over option		
Rainwater Harvesting	/	\$	40,500		\$7,640	1		\$ 48,140						
Private Well		\$	35,000		\$7,841	7		\$ 42,841		\$ 5,500		\$	5,299	
Community Well		\$	11,571		\$13,873			\$ 25,444		\$ 28,929		\$	22,696	
Waterline Extension		\$	17,451		\$8,070			\$ 25,521		\$ 23,049		\$	22,619	
				-		-	-		-					
		Caj	pital Cost		Avoided Cost of		/	Estimated Lot		Net Capital Cost w/				
		"premium"			Water System		C	ost Reduction*		Lot Cost Reduction				
RWH vs. Community Well		\$	28,929		\$ 11,571			\$ 10,000		\$ 18,929				
RWH vs. Waterline Extension		\$	23,049		\$ 17,451			\$ 15,000		\$ 8,049				
								\setminus						
* Avoided cost "credited" to lot cost reduction \sim 85% of avoided water system capital cost.														

Building-Scale Rainwater Harvesting can reduce stormwater management costs

Building-Scale Rainwater Harvesting as THE water supply strategy for your whole development.

