

Geological Society of America Annual Meeting Vancouver, Canada October 20, 2014

Flash Flooding in Karstic Terrains in South-Central Texas

R.T. Green¹, S.E. Fratesi¹, F.P. Bertetti¹, J. Carrera², and Y. Cabeza²

¹Southwest Research Institute[®], ²Institute of Environmental Assessment and Water Research, Spanish Council of Scientific Research in Barcelona, Spain

Flash Floods in South-Central Texas

Since 1996, flash floods have claimed 198 lives in Texas. (National Weather Service)

"Flash-Flood Alley"

Flood.Safety.com

Fatalities by Flooding in the U.S.

Top sixteen flash flood/flood fatality states 1960-1995 Number of fatalities

> **1. TEXAS - 612** 2. CALIFORNIA - 3. SOUTH DAKOTA - 248 4. VIRGINIA - 5. WEST VIRGINIA - 240 6. PENNSYLVANIA 188 7. MISSISSIPPI - 8. COLORADO - 168 9. LOUISIANA - 10. MISSOURI - 11. GEORGIA - 12. NEW YORK - 13. OHIO - 14. ARIZONA - 15. KENTUCKY - 16. TENNESSEE - 91

Flash Floods

High incidence of flash floods due to <u>intense precipitation</u> juxtaposed with <u>topographic influence</u> of the Balcones Escarpment

Record Precipitation in South-Central Texas

<u>22 inches of rain in 2 hrs, 45 minutes</u>, D'Hanis, Texas, May 31, 1935 (world record for rainfall in that duration of time)

<u>36.4 inches of rain in 18 hours</u>, Thrall, Texas, September 9, 1921, 215 fatalities

<u>48 inches of rain in 3 days</u>, Medina, Texas July 31-August 1, 1978

Texas also possesses many low-water crossings, owing in part to the largely rural nature of its roads

General Characteristics of Flash Floods in Non-Karst Terrains

- Result of <u>high-intensity rain cells</u> that drop large amounts of rain within brief period, typically minutes rather than hours
- Generated on only a small fraction of a drainage basin
- Occurs on <u>steep, relatively impermeable surface</u> (naturally occurring or anthropogenic)
- Excessive antecedent moisture conditions
- Low infiltration capacity
- Rising and recession <u>limbs of hydrographs are sharp</u> and of similar duration
- <u>Total discharge</u> may not be great
- Flash flood waters move at high speeds

General Characteristics of Flash Floods for Classical Karst Terrains (Bonacci, 1995)

- High infiltration rate;
- <u>Rare or non-existence of overland flow and open streams;</u>
- <u>Strong interaction</u> between the circulation of surface water and groundwater in karst areas;
- <u>Small storage capacity of the karst medium;</u>
- <u>Fast groundwater flow</u> through karst conduits;
- <u>High and fast oscillations</u> of groundwater levels in karst areas;
- <u>Interbasin overflow</u> and/or redistribution of the catchment areas caused by groundwater rising;
- <u>Limited discharge capacity</u> of many karst springs;
- <u>Limited capacity</u> of swallow-holes.

How do Karst Flash Floods Differ from Conventional Flash Floods?

Conventional flash floods:

Dominated by surfacewater flow

Groundwater contribution to flooding is negligible

Conventional floods are dependent on antecedent moisture conditions Karst flash floods:

Dominated by GW flow

Antecedent moisture conditions not important

Groundwater surge is important

Groundwater drainage area may differ greatly from surface watershed

Karst porosity ~1%

Groundwater and Surface-Water Flow Dynamics in a Karst Terrain during Flooding

Fossil and inactive karst conduits and springs get activated during a flood

Secondary flow channels become active

<u>Constrictions in conduits</u> can lead to <u>backflooding</u> during flooding and <u>activation</u> <u>of inactive springs</u>

This makes it <u>difficult to monitor and detect</u> flash flooding

Water level in conduits can be greater than water level in adjoining matrix

(Bonacci et al., 2006)

How do Texas Karst Flash Floods Differ from Classical Karst Flash Floods?

- 1. Overland flow and open streams are evident
- 2. Both GW and surface-water flow are active
- 3. Infiltration rate is limited

Classical karst terrain

Texas karst terrain

What is needed to formulate a karst flash flood warning system?

Need to Develop a Conceptual Model of Flow Contributions

- **Critical information needed:**
- Sub-basin delineation
- Karst-flow network
- Surface-flow regime
- Lag time, Time-to-peak Retention capacity
- Allogenic contribution
- Groundwater/surface-water interaction
- Flooding threshold (excess water?)

(taken from Bailly-Compte et al. 2012)

Compile:

- Sub-basins,
- NEXRAD precipitation correlated to sub-basins (possibly corrected by gauge),
- Maximum retention potential,
- Sub-basin thresholds,
- Lag times,
- Time-to-peak,
- Downstream focal points (i.e., low-water crossings)

Develop network to integrate data into flashflood warning system

If correctly implemented, <u>high-speed computing</u> <u>not required</u> for real-time network

Network Development

Flash-Flood Warning Network Example 1

- Storm moves NW-SE
- Multiple sub-basin thresholds exceeded
- Downstream danger points triggered only in eastern watershed

Flash-Flood Warning Network Example 2

- Storm moves W-E
- Multiple sub-basin thresholds exceeded
- Downstream danger points triggered only in eastern and western watersheds

Summary

Sufficient data, insight on karst flow, and technology are available to improve flash flood warning in karst terrains

If an improved flash flood warning system is developed:

- Blanket warnings could be avoided
- Critical focal points could be given extra protection

Temple 🝙 Burnet Eldorado Llano © Cameron Ozona Mason Flood of July 2002 eorgetown Sonora Caldwell Junction Rainfall totals of 30-40 inches Bastrop LaGrange Rocksprings San ockhar Damage to 48,000 homes Columbu Del Ria ionzales Hallettsville 10 Deaths Hondo Brackettville Cuera 250 high water rescue calls June-July Crystal Cit Pearsall Pleasanton Eaqle © Pass Karnes Cit © Victoria Flood Porte Lavaca Goliad \$250 Million in losses Jn29-JI05,2002 Carrizo Spring Cotulla Tilden ⊛ Beeville Refugia

isohyetal analysis Edna