Rainwater for Everybody! The What, Why, & How

of Rainwater Harvesting

Chris Maxwell-Gaines, P.E.

- Integrated water conservation solutions
- Rainwater, Graywater, Drainage, Irrigation
- Design / Build
- Residential / Commercial

What is Rainwater Harvesting?

- Active VS. Passive
- Rainwater VS. Stormwater

Man Gets Prison Sentence For **Collecting Rainwater On His Own** Property

Posted on April 11, 2015 by Royce Christyn in News, US // 136 Comments.

Collecting rainwater on your own property can now lead to jail time, as proven by a man from Oregon who was sentenced to prison for doing just that. Who owns the rain? The US government, apparently so it seems.

Register	For	Free
----------	-----	------

Querd	
Email	
Last Name	
First Name	

To search, type and hit enter

The Psychology of Rainwater Collection

Stage 1: Buckets and more

Stage 2: Rain barrels

Stage 3: Multiples

Stage 4: Dress it up

Stage 5: Do it right

Why harvest rainwater?

Largest irrigated crop in US?

Turf Grass !!

Water Usage Multiyear

Source: Austin Water website

Water Usage Multiyear

Source: Austin Water website

Progression of Indoor Fixture Efficiency

Indoor Water Conservation Standards

Local conditions may vary. See accompanying text summary for forecast statements.

http://drought.unl.edu/dm

Released Thursday, September 30, 2010 Author: Richard Heim/Liz Love-Brotak, NOAA/NESDIS/NCDC

for forecast statements.

http://drought.unl.edu/dm

Released Thursday, September 1, 2011 Authors: Eric Luebehusen, U.S. Department of Agriculture

SL

Intensity:

D0 Abnormally Dry D1 Drought - Moderate D2 Drought - Severe D3 Drought - Extreme D4 Drought - Exceptional Drought Impact Types:

- Delineates dominant impacts
- S = Short-Term, typically <6 months (e.g. agriculture, grasslands)

L = Long-Term, typically >6 months (e.g. hydrology, ecology)

The Drought Monitor focuses on broad-scale conditions. Local conditions may vary. See accompanying text summary for forecast statements.

http://droughtmonitor.unl.edu/

USDA National Drught Miggalian Center

Released Thursday, September 6, 2012 Author: Brian Fuchs, National Drought Mitigation Center

Local conditions may vary. See accompanying text summary for forecast statements.

http://droughtmonitor.unl.edu/

Released Thursday, September 26, 2013 Author: Brad Rippey, U.S. Department of Agriculture

How to Harvest Rainwater?

Rainwater Math

"1 inch of rain on a 1,000 sq ft collection area will yield 623 gallons"

in of rain X ____ roof sq ft X 0.623 gal/sq ft

Rainwater Harvesting Benefits

- Reduces stormwater runoff & provides solution to on-site drainage problems
- Better for lawn and garden plants
- Simple technology that is easy to maintain
- Recognized as a green building technique

Rainwater Uses

- Outdoor water use
 - Irrigation of landscaping and lawns
 - Other outdoor uses

- Indoor, non-potable water use
 - Toilets, urinals, & clothes washing machines
- Potable water supply
 - Filtration and disinfection required

System Sizing & Efficiency

- Three considerations:
 - Collection surface size
 - Storage volume size
 - Expected demand
- Three main methods
 - Design for Optimization
 - Design for Space
 - Design for Budget

Design for Optimization

• Use water budgets to identify optimal cistern size

Calculations using Average Rainfall: Dallas/Fort Worth area

	Indoor		Total	Rainfall	End of month	Municipal Water
	demand	Irrigation	demand	collected	storage	Saved
	(gal)	(gal)	(gal)	(gal)	(gallons)	(gallons)
January	0	2,034	2,034	14,896	12,862	2,034
February	0	6,702	6,702	18,735	22,400	6,702
March	0	10,816	10,816	23,957	22,400	10,816
April	0	22,506	22,506	24,187	22,400	22,506
May	0	11,904	11,904	41,694	22,400	11,904
June	0	41,705	41,705	24,418	5,112	41,705
July	0	55,414	55,414	16,048	0	21,160
August	0	53,798	53,798	16,125	0	16,125
September	0	32,928	32,928	18,582	0	18,582
October	0	4,773	4,773	30,791	22,400	4,773
November	0	3,409	3,409	18,659	22,400	3,409
December	0	0	0	19,196	22,400	-
					Total:	150 981

The Importance of Storage Volume

Design for Space

Fence Height Limitation

> Tank Diameter Limitation

Gutter

Height

Limitation

Design for Budget

- Most frequent limit for systems intended for irrigation only
- Systems can be expanded at a later time

"Dry" Rainwater Systems

"Dry" Rainwater Systems

- Pipes drain completely
- Easy system to install and maintain
- Tank must be located close to collection surface

"Wet" Rainwater Systems

"Wet" Rainwater Systems

- Water remains in collection pipes
- Gutter must be above tank inlet
- Allows any location of storage tank
- Greater collection efficiency

Gutter or inlet screening

"Your first line of defense"

Inlet Filtration is VITAL

Inlet Filtration is NOT First Flush

- Inlet filters keep large debris out
- First flush from the roof carries a higher concentration of pollutants
- Inlet filtration + First flush
 = Best Practice

First flush diverter

Diverts the initial wash of the roof

First flush of contaminated water is diverted into chamber

Water flow from roof

Once chamber is full fresh water flows to tank

Adequate First Flush Amount ??

Roof Water Quality and First Flush

- "Effect of Roof Material on Water Quality for Rainwater Harvesting Systems – Additional Physical, Chemical, and Microbiological Data Report" - Texas Water Development Board, Jan 2011
- Tested 5 different roof types
- Collected rainwater from 6
 events in 2009 & 2010

Turbidity (NTU)

Median (min - max)

Roof type	First-flush	Tank 1	Tank 2
Shingle	14 (4-41)	9 (3-24)	9 (3-14)
Galvalume®	31 (2-102)	7 (2-30)	7 (2-9)
Tile	26 (5-64)	16 (2-36)	4 (2-9)
Cool	37 (9-105)	7 (2-26)	5 (2-13)
Green	4 (3-15)	3 (3-11)	4 (3-4)
Ambient rain	4 (3-8)		

TSS (mg/L)

Median (min - max)

Roof type	First-flush	Tank 1	Tank 2
Shingle	29 (6-123)	30 (6-128)	38 (12-53)
Galvalume®	96 (4-260)	58 (2-87)	33 (20-75)
Tile	95 (3-164)	23 (1-80)	19 (0-37)
Cool	114 (6-238)	76 (6-118)	33 (4-46)
Green	18 (3-84)	12 (3-53)	10 (1-49)
Ambient rain	17 (0-46)		

Total Coliform (CFU/100mL)

Median (min - max)

Roof type	First-flush	Tank 1	Tank 2
Shingle	2470 (1500-8100)	800 (203-6933)	256 (177-733)
Galvalume®	767 (300-1267)	167 (<1-770)	416 (117-500)
Tile	1680 (1017-5617)	832 (225-983)	567 (293-783)
Cool	1882 (1683-5450)	917 (130-3750)	226 (150-867)
Green	333 (13-1233)	12 (<1-1300)	8 (7-833)
Ambient rain	550 (340-648)		

TWDB suggests >10 gallons / 1,000 sf

 Ultimately depends on use of rainwater, roof type, and locational issues

Tank inlet filter and screen

Pump system

- Pump sized for demand
- Different type of systems:
 - Hose bibb only
 - Connected to irrigation
 - On-demand
- Don't have to settle for onsite water pressure

Backup water supply

- Auto-fill mechanism
- Manual fill
- Auto-switch
- Remember,
 Air gap or RPZ

Water Level Gauge

Metal cisterns

Polyethylene cisterns

Fiberglass cisterns

Corrugated metal cisterns

Pioneer Water Tanks

Rainwater Tank Cladding

Underground tank systems

How much rainwater?

- Camp Mabry, Austin daily rainfall data, 1998 to 2014
- Assumed usage of 50 gallons/day

Scenario #1

• 1,000 sf of collection area

Scenario #2

• 1,700 sf of collection area

Scenario #3

• 2,350 sf of collection area

Collection Area Analysis

Collection Area Chang	e, 1,000 g	gallon ciste	ern, 50 ga	allons/day	usage	
	Scenario #1		Scenario #2		Scenario #3	
Below 25%	52.2%	* 36.1%	37.9%	* 24.6%	31.2%	* 19.6%
Between 25% and 75%	29.4%		34.0%		35.6%	
Over 75%	18.4%	* 4.2%	28.1%	* 7%	33.2%	* 8.8%
Gallons used	195	,350	230	,600	245	,900

- Doubling collection area provided 50,000 more gallons of used rainwater over 26 years
- Larger collection area gave more opportunities

Collection Area & Cistern Size Analysis

Collection Area Chang	e, 2500 g	allon ciste	rn, 50 gal	lons/day	usage	
	Scenario #1		Scenario #2		Scenario #3	
Below 25%	42.9%	* 22.6%	21.8%	* 9.8%	12.9%	* 4.9%
Between 25% and 75%	34.6%		34.2%		33.6%	
Over 75%	22.5%	* 2.6%	44.0%	* 5.9%	53.5%	* 8.0%
Gallons used	236,850		276,000		290,950	

- Doubling cistern size provided 41,000 more gallons of used rainwater over 26 years (1k gal cistern scenario)
- Larger collection area gave more opportunities

Collection Area & Daily Usage Analysis

Collection Area Chang	e, 2,500 g	gallon ciste	ern, 100 g	gallons/da	y usage	
	Scenario #1		Scenario #2		Scenario #3	
Below 25%	78.6%	* 16.4%	54.8%	* 37.2%	43.8%	* 28.3%
Between 25% and 75%	16.4%		29.3%		31.5%	
Over 75%	5.1%	* 0.6%	15.9%	* 2.8%	24.6%	* 4.7%
Gallons used	262	,700	384	,000	439	,000

 Doubling usage provides for better usage of larger collection area and larger cistern
Rainwater Incentives

- Austin & San Marcos provide rebates up to \$5,000 for systems over 300 gallons
- Rainwater harvesting equipment is sales tax exempt in TX
- Hays County gives property tax exemption
- LCRA provides impervious cover credits

www.watercache.com

Contact Us Today! 512-490-0932 Share this site! Services Education Portfolio Resources Media About Contact

Integrated Water Conservation Solutions...

Rainwater Collection: Graywater Recovery Drainage Solutions : Landscape / Irrigation Design

Want to save water, reduce your utility bills, or build a green home? Searching for an alternative to well water? Look no further!

Rainwater Gravwater

Gutters Drainage

Irrigation landscane

Education / Information

Learn how to conserve water in your home and how our integrated systems can save you money

Get more specifics about rainwater harvesting and graywater reuse

> Learn More Have Questions?

Installation / Maintenance Homeowners, builders, and general contractors...

Let us create a customized solution for you and take care of all the details with our turn-key installation services

> Learn More **Request Consultation**

Design / Consulting Architects, Engineers, and Developers...

Professional design services that create conservation opportunities through stormwater and water demand management

> Learn More Contact Us

DIY / Contractors

Conserve more water...

Find out more about the high-quality products and components we install

Browse our complete line of rainwater collection and water conservation products

> Learn More Download Catalog